Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
Cureus ; 14(7): e26704, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1979646

RESUMEN

Introduction The role of vitamin D deficiency in increasing susceptibility or modifying outcomes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) illness is unclear, and data about the association is scant in low- and middle-income countries. We set out to investigate any correlation between baseline vitamin D status and the length of hospital stay in laboratory-confirmed SARS-CoV-2 patients in India. Methods Two hundred patients with SARS-CoV-2 infection requiring admission in a North Indian 1200-bedded tertiary care hospital were recruited prospectively from November 2020 to March 2021. Baseline serum 25 hydroxyvitamin D [25(OH)D] levels were measured within 24 hours of admission using chemiluminescent immunoassay. Patients were managed as per hospital management protocol for COVID-19. The primary outcome was the length of hospital stay; secondary outcomes were comparative clinical severity between two groups, rate of requirement of mechanical ventilation and/or non-invasive ventilation (NIV), and mortality. Vitamin D deficiency (VDD) was defined as baseline vitamin D levels of <30 ng/ml. Results  Of the 200 recruited patients, 57.5% (n = 115) patients were vitamin D deficient, and the overall median length of hospital stay was around 12 days (IQR: 8-15 days). There was no statistically significant difference in the length of hospital stay between patients with normal serum vitamin D (VDS) and those with VDD, median LOS being 12 days (95% CI: 10, 12 days) in VDD cases and 11 days (95% CI: 10,13 days) in VDS cases (p = 0.176). No association between baseline 25(OH)D and any of the secondary outcomes could be established. Conclusions In Indian patients, baseline vitamin D levels are not associated with the length of hospital stay, need for mechanical ventilation, or mortality.

3.
Journal of Global Health ; 12, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1970596

RESUMEN

Background Severe acute respiratory infections (SARI) are a leading cause of hospitalizations in children, especially due to viral pathogens. We studied the prevalence of respiratory viruses among children aged <5 years hospitalized with severe acute respiratory infections (SARI) in Kashmir, India. Methods We conducted a prospective observational study in two tertiary care hospitals from October 2013 to September 2014, systematically enrolling two children aged <5 years with SARI per day. We defined SARI as history of fever or measured fever (≥38°C) and cough with onset in the last 7 days requiring hospitalization for children aged 3-59 months and as physician-diagnosed acute lower respiratory infection for children aged <3 months. Trained study staff screened children within 24 hours of hospitalization for SARI and collected clinical data and nasopharyngeal swabs from enrolled participants. We tested for respiratory syncytial virus (RSV) A and B, influenza viruses, rhinoviruses (HRV)/enteroviruses, adenovirus (AdV), bocavirus (BoV), human metapneumovirus (hMPV) A and B, coronaviruses (OC43, NL65, C229E), and parainfluenza viruses (PIV) 1, 2, 3 and 4 using standardized duplex real-time polymerase chain reaction. Results Among 4548 respiratory illness admissions screened from October 2013 to September 2014, 1026 met the SARI case definition, and 412 were enrolled (ages = 5 days to 58 months;median = 12 months). Among enrolees, 256 (62%) were positive for any virus;RSV was the most commonly detected (n = 118, 29%) followed by HRV/enteroviruses (n = 88, 21%), PIVs (n = 31, 8%), influenza viruses (n = 18, 4%), BoV (n = 15, 4%), coronaviruses (n = 16, 4%), AdV (n = 14, 3%), and hMPV (n = 9, 2%). Fifty-four children had evidence of virus co-detection. Influenza-associated SARI was more common among children aged 1-5 years (14/18, 78%) while most RSV detections occurred in children <12 months (83/118, 70%). Of the RSV viruses typed (n = 116), the majority were type B (94, 80%). Phylogenetic analysis of G gene of RSV showed circulation of the BA9 genotype with 60bp nucleotide duplication. Conclusions Respiratory viruses, especially RSV, contributed to a substantial proportion of SARI hospitalizations among children <5 years in north India. These data can help guide clinicians on appropriate treatment and prevention strategies.

4.
Indian J Tuberc ; 69 Suppl 1: S1-S191, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1926544

RESUMEN

Inhalational therapy, today, happens to be the mainstay of treatment in obstructive airway diseases (OADs), such as asthma, chronic obstructive pulmonary disease (COPD), and is also in the present, used in a variety of other pulmonary and even non-pulmonary disorders. Hand-held inhalation devices may often be difficult to use, particularly for children, elderly, debilitated or distressed patients. Nebulization therapy emerges as a good option in these cases besides being useful in the home care, emergency room and critical care settings. With so many advancements taking place in nebulizer technology; availability of a plethora of drug formulations for its use, and the widening scope of this therapy; medical practitioners, respiratory therapists, and other health care personnel face the challenge of choosing appropriate inhalation devices and drug formulations, besides their rational application and use in different clinical situations. Adequate maintenance of nebulizer equipment including their disinfection and storage are the other relevant issues requiring guidance. Injudicious and improper use of nebulizers and their poor maintenance can sometimes lead to serious health hazards, nosocomial infections, transmission of infection, and other adverse outcomes. Thus, it is imperative to have a proper national guideline on nebulization practices to bridge the knowledge gaps amongst various health care personnel involved in this practice. It will also serve as an educational and scientific resource for healthcare professionals, as well as promote future research by identifying neglected and ignored areas in this field. Such comprehensive guidelines on this subject have not been available in the country and the only available proper international guidelines were released in 1997 which have not been updated for a noticeably long period of over two decades, though many changes and advancements have taken place in this technology in the recent past. Much of nebulization practices in the present may not be evidence-based and even some of these, the way they are currently used, may be ineffective or even harmful. Recognizing the knowledge deficit and paucity of guidelines on the usage of nebulizers in various settings such as inpatient, out-patient, emergency room, critical care, and domiciliary use in India in a wide variety of indications to standardize nebulization practices and to address many other related issues; National College of Chest Physicians (India), commissioned a National task force consisting of eminent experts in the field of Pulmonary Medicine from different backgrounds and different parts of the country to review the available evidence from the medical literature on the scientific principles and clinical practices of nebulization therapy and to formulate evidence-based guidelines on it. The guideline is based on all possible literature that could be explored with the best available evidence and incorporating expert opinions. To support the guideline with high-quality evidence, a systematic search of the electronic databases was performed to identify the relevant studies, position papers, consensus reports, and recommendations published. Rating of the level of the quality of evidence and the strength of recommendation was done using the GRADE system. Six topics were identified, each given to one group of experts comprising of advisors, chairpersons, convenor and members, and such six groups (A-F) were formed and the consensus recommendations of each group was included as a section in the guidelines (Sections I to VI). The topics included were: A. Introduction, basic principles and technical aspects of nebulization, types of equipment, their choice, use, and maintenance B. Nebulization therapy in obstructive airway diseases C. Nebulization therapy in the intensive care unit D. Use of various drugs (other than bronchodilators and inhaled corticosteroids) by nebulized route and miscellaneous uses of nebulization therapy E. Domiciliary/Home/Maintenance nebulization therapy; public & health care workers education, and F. Nebulization therapy in COVID-19 pandemic and in patients of other contagious viral respiratory infections (included later considering the crisis created due to COVID-19 pandemic). Various issues in different sections have been discussed in the form of questions, followed by point-wise evidence statements based on the existing knowledge, and recommendations have been formulated.


Asunto(s)
COVID-19 , Enfermedad Pulmonar Obstructiva Crónica , Niño , Humanos , Anciano , Pandemias , Broncodilatadores/uso terapéutico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Personal de Salud
6.
Vaccines (Basel) ; 9(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1481028

RESUMEN

Background: Influenza vaccine uptake in India is poor, and scant data exist regarding the effectiveness of influenza vaccine against hospitalization. Methods: From October 2019 to March 2020, vaccination status of 1219 patients (males n = 571, aged 5-107 years; median, 50 years) hospitalized with severe acute respiratory illness (SARI) was assessed. The patients were tested for influenza viruses and their subtypes by RT PCR. Sequencing of the HA gene was performed. Vaccine effectiveness (VE) against influenza subtypes was estimated by the test negative design. Results: A total of 336 (27.5%) patients were influenza-positive, with influenza B/Victoria accounting for 49.7% (n = 167), followed by influenza A/H1N1 (47.6%; n = 155) and influenza A/H3N2 (4.4%; n = 15). About 6.8% and 8.6% of the influenza-positive and influenza-negative patients, respectively, had been vaccinated. Adjusted VE for any influenza strain was 13% (95% CI -42 to 47), which for influenza B was 0%. HA sequencing revealed that influenza B samples mainly belonged to subclade V1A.3/133R with deletion of residues 163-165, as against the 2-aa deletion in influenza B/Colorado/06/2017 strain, contained in the vaccine. VE for influenza A/H1N1 was 55%. Conclusions: Poor VE due to a genetic mismatch between the circulating strain and the vaccine strain calls for efforts to reduce the mismatch.

7.
Cureus ; 13(9): e18393, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1468732

RESUMEN

Immunomodulation has long been an adjunct approach in treating critically ill patients with sepsis, acute respiratory distress syndrome (ARDS), and acute pancreatitis (AP). Hyperactive immune response with immunopathogenesis leads to organ dysfunction and alters the clinical outcomes in critically ill. Though the immune response in the critically ill might have been overlooked, it has gathered greater attention during this novel coronavirus disease 2019 (COVID-19) pandemic. Modulating hyperactive immune response, the cytokine storm, especially with steroids, has shown to improve the outcomes in COVID-19 patients. In this review, we find that immune response pathogenesis in critically ill patients with sepsis, ARDS, and AP is nearly similar. The use of immunomodulators such as steroids, broad-spectrum serine protease inhibitors such as ulinastatin, thymosin alpha, intravenous immunoglobulins, and therapies such as CytoSorb and therapeutic plasma exchange may help in improving the clinical outcomes in these conditions. As the experience of the majority of physicians in using such therapeutics may be limited, we provide our expert comments regarding immunomodulation to optimize outcomes in patients with sepsis/septic shock, ARDS, and AP.

8.
Lung India ; 38(4): 401-402, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1302653
9.
Lung India ; 38(Supplement): S92-S96, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1134331
10.
Lung India ; 38(Supplement): S105-S115, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1123963

RESUMEN

During the times of the ongoing COVID pandemic, aerosol-generating procedures such as bronchoscopy have the potential of transmission of severe acute respiratory syndrome coronavirus 2 to the healthcare workers. The decision to perform bronchoscopy during the COVID pandemic should be taken judiciously. Over the years, the indications for bronchoscopy in the clinical practice have expanded. Experts at the Indian Association for Bronchology perceived the need to develop a concise statement that would assist a bronchoscopist in performing bronchoscopy during the COVID pandemic safely. The current Indian Association for Bronchology Consensus Statement provides specific guidelines including triaging, indications, bronchoscopy area, use of personal protective equipment, patient preparation, sedation and anesthesia, patient monitoring, bronchoscopy technique, sample collection and handling, bronchoscope disinfection, and environmental disinfection concerning the coronavirus disease-2019 situation. The suggestions provided herewith should be adopted in addition to the national bronchoscopy guidelines that were published recently. This statement summarizes the essential aspects to be considered for the performance of bronchoscopy in COVID pandemic, to ensure safety for both for patients and healthcare personnel.

11.
Lung India ; 38(Supplement): S41-S47, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1123958

RESUMEN

The SARS-CoV-2 pandemic has already infected in excess of 50 million people worldwide and resulted in 1.2 million deaths. While the majority of those infected will not have long-term pulmonary sequelae, 5%-10% will develop severe COVID-19 pneumonia and acute respiratory distress syndrome (ARDS). The natural history of these severely affected patients is unclear at present, but using our knowledge of closely related coronavirus outbreaks like severe acute respiratory distress syndrome (SARS) and middle east respiratory syndrome (MERS), we would hypothesize that the majority will stabilize or improve over time although some patients will progress to advanced lung fibrosis or post-COVID interstitial lung disease (PC-ILD). Unlike the SARS and MERS outbreaks which affected only a few thousands, the sheer scale of the present pandemic suggests that physicians are likely to encounter large numbers of patients (potentially hundreds of thousands) with PC-ILD. In this review, we discuss the pathogenesis, natural history, and radiology of such patients and touch on clinical, laboratory, and radiographic clues at presentation which might help predict the future development of lung fibrosis. Finally, we discuss the responsible use of antifibrotic drugs such as pirfenidone, nintedanib, and some newer antifibrotics, still in the pipeline. The biological rationale of these drugs and the patient groups where they may have a plausible role will be discussed. We conclude by stressing the importance of careful longitudinal follow-up of multiple cohorts of post-COVID survivors with serial lung function and imaging. This will eventually help to determine the natural history, course, and response to therapy of these patients.

13.
Lung India ; 37(3): 187-189, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-193951
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA